Explanation:
Kepler’s third law states that for all objects orbiting a given body, the cube of the semimajor axis (A) is proportional to the square of the orbital period (P).
For each of our planets orbiting the Sun, the relationship between the orbital period and semimajor axis can be represented by the equation as:

k is constant of proportionality
It is required to solve the above equation for k

Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
so the 1st on is the one on the left, middle is right and the 3rd one is the right one
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:

Answer:
photoelectric effect
Explanation:
When the energy from photons is absorbed by matter, the matter can emit electrons. This process is called the photoelectric effect. The photoelectric effect is a property of light that is not explained by the theory that light is a wave.