Answer:
m =
x,
graph of x vs m
Explanation:
For this exercise, the simplest way to determine the mass of the cylinder is to take a spring and hang the mass, measure how much the spring has stretched and calculate the mass, using the translational equilibrium equation
F_e -W = 0
k x = m g
m =
x
We are assuming that you know the constant k of the spring, if it is not known you must carry out a previous step, calibrate the spring, for this a series of known masses are taken and hung by measuring the elongation (x) from the equilibrium position, with these data a graph of x vs m is made to serve as a spring calibration.
In the latter case, the elongation measured with the cylinder is found on the graph and the corresponding ordinate is the mass
<span>Kirchhoff's laws apply to AC circuits to either two cases: instantaneousneous values of currents and voltages or to complex values of currents and voltages. However, this never applies to: rms values of currents and voltages. Kirchoff's law relates to the current, voltage and resistance to multiple nodes</span>
Types of Gas? I'm not exactly sure what you're asking
Explanation:
Lodestone am iron were the only known magnetic materials in Gilbert's day, and his task was to investigate magnetism. Gilbert was so sure that the earth was a giant lodestone and used the earth as a primary reference, defining the north(magnetic) pole of a needle, or a a nail floating on a piece of cork, to be that which turns towards the Earth's north geographic pole. he wanted to prove this with a model Terella, using short pieces of iron.