Initial conditions:
m1 = 1.0 ; v1 = 5
m2 = 4.0 ; v2 = 0
In the case where the second object (sometimes called the target) is at rest the velocities after the condition are
v1' = v1* (m1-m2)/(m1+m2)
v2' = 2v1*m1/(m1+m2)
For this we get
v1' = 5*(-3)/5 = -3m/s (moving in the opposite direction as before at 3m/s
v2' = 2*5*(1)/5 = 2m/s in the same direction as the original ball was moving
you can see these directions by looking at the signs. The momenta also add to the initial momentum as required.
Answer:
Capacidad de almacenamiento ofrecida por los DVD
Hay que mencionar que es posible conseguir DVD de una o dos capas. Los DVD que cuentan con una capa son capaces de almacenar aproximadamente 4.7GB de datos, mientras que los de doble capa ofrecen la posibilidad de almacenar alrededor de 8.5GB
Explanation:
Answer:

Explanation:
As we know that the angle made with the vertical is given so we have

so we have

now differentiate both sides with time


now we know that



now we have


B. wind.
Sun (solar) --> plants (photosynthesis) --> cola (chemical) --> heat (combustion) --> steam --> turbine (kinetic) --> generator (electric)
There is no wind.
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.