By looking at ur answer choices, I am assuming the width is 2/5 inches and the length is 3/5 inches.
A = L * W
A = 3/5 * 2/5
A = 6/25 in^2 <==
We can assume that the point the ladder creates with the ground and building is a triangle. You can use the Pythagorean theorem to solve this.
A^2 + B^2 = C^2
The ladder is C, and the building can act as A or B, so for the purpose of this explanation, I’ll make it A.
11^2 + B^2 = 14^2
Figure out the squares
121 + B^2 = 196
Subtract 121 from both sides
B^2 = 75
Square root B^2 and 75
B = 5 root3
Answer:
1) (x + 3)(3x + 2)
2) x= +/-root6 - 1 by 5
Step-by-step explanation:
3x^2 + 11x + 6 = 0 (mid-term break)
using mid-term break
3x^2 + 9x + 2x + 6 = 0
factor out 3x from first pair and +2 from the second pair
3x(x + 3) + 2(x + 3)
factor out x+3
(x + 3)(3x + 2)
5x^2 + 2x = 1 (completing squares)
rearrange the equation
5x^2 + 2x - 1 = 0
divide both sides by 5 to cancel out the 5 of first term
5x^2/5 + 2x/5 - 1/5 = 0/5
x^2 + 2x/5 - 1/5 = 0
rearranging the equation to gain a+b=c form
x^2 + 2x/5 = 1/5
adding (1/5)^2 on both sides
x^2 + 2x/5 + (1/5)^2 = 1/5 + (1/5)^2
(x + 1/5)^2 = 1/5 + 1/25
(x + 1/5)^2 = 5 + 1 by 25
(x + 1/5)^2 = 6/25
taking square root on both sides
root(x + 1/5)^2 = +/- root(6/25)
x + 1/5 = +/- root6 /5
shifting 1/5 on the other side
x = +/- root6 /5 - 1/5
x = +/- root6 - 1 by 5
x = + root6 - 1 by 5 or x= - root6 - 1 by 5