Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0
4 one coefficient and three variables
The only way to have two numbers that are the same and add up to be 15
is if they're both 7.5 , but those don't multiply to be 36. So I guess there's
no answer that satisfies all the conditions of this question.
3pi/7 < pi/2 because 3/7 < 1/2, and pi/2 is a right angle. Conclusion: the angle opposite side a is an acute angle. In this situation the triangle could be a right triangle, in which case C would be true, but it does not have to be a right triangle, so don´t choose C. Similarly, it could be an acute triangle, in which case B would be true, but it does not have to be, so don´t choose B. Also, A says the angle opposite side a is obtuse, which is false. So don´t choose A. That leaves D, which says the angle opposite side a is acute, which we know is true. So the answer is <span>D. b^2 + c^2 > a^2</span>