Answer:

Step-by-step explanation:
we know that
If a set of ordered pairs represent possible inputs and outputs of the function
then
all ordered pairs of the set must be satisfy the function
we have

<u>case A)</u> 
Point 
Substitute the value of x and the value of y in the function

-----> is true
Point 
Substitute the value of x and the value of y in the function

-----> is true
Point 
Substitute the value of x and the value of y in the function

-----> is not true
therefore
The set case A) not represent possible inputs and outputs of the function
<u>case B)</u> 
Point 
Substitute the value of x and the value of y in the function

-----> is true
Point 
Substitute the value of x and the value of y in the function

-----> is true
Point 
Substitute the value of x and the value of y in the function

-----> is true
therefore
The set case B) represent possible inputs and outputs of the function
<u>case C)</u> [tex{(0, 4), (2, 6), (4, 16)}[/tex]
Point 
Substitute the value of x and the value of y in the function

-----> is not true
therefore
The set case C) not represent possible inputs and outputs of the function
<u>case D)</u> 
Point 
Substitute the value of x and the value of y in the function

-----> is not true
therefore
The set case D) not represent possible inputs and outputs of the function