Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Answer:5X+2=4X-9\quad :\quad X=-11
Step-by-step explanation:
5X+2=4X-9
5X+2-2=4X-9-2
5X=4X-11
5X-4X=4X-11-4X
X=-11
Answer:
look at the picture i have sent
Answer:
Tha answer is F
Step-by-step explanation:
It relates to because the more cars are washed the more money they make
Answer:
There is about 4,164/4,165 chances of not getting getting a four of a kind. So, it is extremely unlikely or even borderline impossible in that situation to get a four of a kind.
<u>But in the long run, it can be increased only if you keep drawing. So, the awnser would have to be. D </u>
Step-by-step explanation:
A. It does mean that if you are dealt 4165 five‑card poker hands, one will be four‑of‑a‑kind.
B. It does not mean that all will be four‑of‑a‑kind. The probability is actually saying that only on the 4165 the poker hand will you get a four‑of‑a‑kind, not just on any of the 4165 poker hands.
C. The probability is actually saying that in the long run, with a large number of five‑card poker hands, the fraction in which you will be dealt a four‑of‑a‑kind is 1 / 4165.
D. The chance you will be dealt four‑of‑a‑kind is 1 / 4165 only on the first hand. This chance will then increase with each new hand you are dealt until you eventually win