The sulphate solutions came from a recycling LIBs waste cathode materials, which were done by previous research; their content is shown in Table 1 [18]. Sodium carbonate (Na2CO3) was purchased from Nihon Shiyaku Reagent, Tokyo, Japan (NaCO3, 99.8%), for the chemical precipitation. CO2 was purchased from Air Product and Chemical, Taipei, Taiwan (CO2 ≥ 99%), to carry out the hydrogenation–decomposition method. Dowex G26 was obtained from Sigma-Aldrich (St. Louis, MO, USA) and was used as a strong acidic cation exchange resin, to remove impurities. Multi-elements ICP standard solutions were acquired from AccuStandard, New Haven, Connecticut State, USA. The nitric acid (HNO3) and sulfuric acid (H2SO4) were acquired from Sigma-Aldrich (St. Louis, MO, USA) (HNO3 ≥ 65%) (H2SO4 ≥ 98%) The materials were analyzed by energy-dispersive X-ray spectroscopy (EDS; XFlash6110, Bruker, Billerica, MA, USA), X-ray diffraction (XRD; DX-2700, Dangdong City, Liaoning, China), scanning electron microscopy (SEM; S-3000N, Hitachi, Tokyo, Japan), and inductively coupled plasma optical emission spectrometry (ICP-OES; Varian, Vista-MPX, PerkinElmer, Waltham, MA, USA). In order to
Appl. Sci. 2018, 8, 2252 3 of 10
control the hydrogenation temperature and heating rate, a thermostatic bath (XMtd-204;
Answer:
The final volume of the bubble is 7.13 mL.
Explanation:
The combined gas equation is,
where,
= initial pressure of gas = 3 atm
= final pressure of gas = 0.95 atm
= initial volume of gas =
= final volume of gas = ?
= initial temperature of gas =
= final temperature of gas =
Now put all the given values in the above equation, we get:

The final volume of the bubble is 7.13 mL.
The temperature will be the average of 10 C and 20 C which is 15 C.
Energy is transferred from faster moving molecules to slower moving molecules, and the result is the average of 15°C. <span>This is just another temperature problem where you add something hot to a cold liquid and you have to calculate the final temperature. Since the energy given up by the hot coffee = energy absorbed by the cold coffee, the mass of the two fluids is the same (each is 1 cup) and both are coffee so the specific heat is the same, you get T hot - Tfinal = Tfinal - Tcold and then you solve it, you get T final = (T hot + Tcold) / 2 which is simply the average of the hot and cold temperatures.
BRAINLIEST PLS!</span>