Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

C. A central body is the center of the universe.
B) Equal to the number of protons
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %