Answer:
linear equation in Standard form that can be used to determine how many of each prize Caleb can buy is ![1.25x+ 2.50y = 25](https://tex.z-dn.net/?f=1.25x%2B%202.50y%20%3D%2025)
Step-by-step explanation:
Given:
Total cost spent on prizes for games = $25
Cost of one lip balm = $1.25
Cost of one mini notebook = $2.50
A) linear equation in STANDARD FORM that can be used to determine how many of each prize she can buy.
Let the number of lip balms be x and the number of mini note books be y. Then
![1.25x+ 2.50y = 25](https://tex.z-dn.net/?f=1.25x%2B%202.50y%20%3D%2025)
B. Graph the equation using x- and y- intercepts.
Now by trial and error method
![1.25(0)+ 2.50(10) = 25](https://tex.z-dn.net/?f=1.25%280%29%2B%202.50%2810%29%20%3D%2025)
![1.25(2)+ 2.50(9) = 25](https://tex.z-dn.net/?f=1.25%282%29%2B%202.50%289%29%20%3D%2025)
![1.25(4)+ 2.50(8) = 25](https://tex.z-dn.net/?f=1.25%284%29%2B%202.50%288%29%20%3D%2025)
![1.25(6)+ 2.50(7) = 25](https://tex.z-dn.net/?f=1.25%286%29%2B%202.50%287%29%20%3D%2025)
![1.25(8)+ 2.50(6) = 25](https://tex.z-dn.net/?f=1.25%288%29%2B%202.50%286%29%20%3D%2025)
![1.25(10)+ 2.50(5) = 25](https://tex.z-dn.net/?f=1.25%2810%29%2B%202.50%285%29%20%3D%2025)
![1.25(12)+ 2.50(4) = 25](https://tex.z-dn.net/?f=1.25%2812%29%2B%202.50%284%29%20%3D%2025)
![1.25(14)+ 2.50(3) = 25](https://tex.z-dn.net/?f=1.25%2814%29%2B%202.50%283%29%20%3D%2025)
![1.25(16)+ 2.50(2) = 25](https://tex.z-dn.net/?f=1.25%2816%29%2B%202.50%282%29%20%3D%2025)
![1.25(18)+ 2.50(1) = 25](https://tex.z-dn.net/?f=1.25%2818%29%2B%202.50%281%29%20%3D%2025)
![1.25(20)+ 2.50(0) = 25](https://tex.z-dn.net/?f=1.25%2820%29%2B%202.50%280%29%20%3D%2025)
Thus Caleb can buy 0,2,4,6,8,9,10,12,14,1,6,18,20 lip balms and
0,1,2,3,4,5,6,7,8,9,10 mini note books respectively
Now plotting these value in the graph, we get the below graph