1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
4 years ago
8

ASAP 30 + Brainliest Please only solve 2 - 5

Mathematics
2 answers:
hichkok12 [17]4 years ago
6 0

<u>QUESTION 2a</u>


We want to find the area of the given right angle triangle.


We use the formula

Area=\frac{1}{2}\times base\times height

The height of the triangle is =a cm.

The base is 12cm.


We substitute the given values to obtain,


Area=\frac{1}{2}\times 12\times a cm^2.

This simplifies to get an expression for the area to be

Area=6a cm^2.





<u>QUESTION 2b</u>


The given diagram is a rectangle.


The area of a rectangle is given by the formula

Area=length \times width


The length of the rectangle is l=7cm and the width of the rectangle is w=ycm.


We substitute the values to obtain the area to be


Area=7 \times y


The expression for the area is

Area=7y


<u>QUESTION 2c.</u>


The given diagram is a rectangle.


The area of a rectangle is given by the formula

Area=length \times width


The length of the rectangle is l=2x cm and the width of the rectangle is w=4 cm.


We substitute the values to obtain the area to be


Area=2x \times 4


The expression for the area is

Area=8x


<u>QUESTION 2d</u>


The given diagram is a square.

The area of a square is given by,

Area=l^2.


where l=b m is the length of one side.


The expression for the area is

Area=b^2 m^2


<u>QUESTION 2e</u>

The given diagram is an isosceles triangle.


The area of this triangle can be found using the formula,

Area=\frac{1}{2}\times base\times height.

The height of the triangle is 4cm.


The base of the triangle is 6a cm.


The expression for the area is

Area=\frac{1}{2}\times 6a \times 4cm^2


Area=12a cm^2


<u>QUESTION 3a</u>

Perimeter is the distance around the figure.

Let P be the perimeter, then

P=x+x+x+x

The expression for the perimeter is

P=4x mm


<u>QUESTION 3b</u>

The given figure is a rectangle.


Let P, be the perimeter of the given figure.

P=L+B+L+B


This simplifies to

P=2L+2B

Or

P=2(L+B)


<u>QUESTION 3c</u>

The given figure is a parallelogram.

Perimeter is the distance around the parallelogram

Perimeter=3q+P+3q+P

This simplifies to,


Perimeter=6q+2P

Or

Perimeter=2(3q+P)



<u>QUESTION 3d</u>

The given figure is a rhombus.

The perimeter is the distance around the whole figure.


Let P be the perimeter. Then

P=5b+5b+5b+5b


This simplifies to,

P=20b mm


<u>QUESTION 3e</u>

The given figure is an equilateral triangle.

The perimeter is the distance around this triangle.

Let P be the perimeter, then,

P=2x+2x+2x


We simplify to get,


P=6x mm


QUESTION 3f

The figure is an isosceles triangle so two sides are equal.


We add all the distance around the triangle to find the perimeter.


This implies that,


Perimeter=3m+5m+5m


Perimeter=13m mm



<u>QUESTION 3g</u>

The given figure is a scalene triangle.

The  perimeter is the distance around the given triangle.

Let P be the perimeter. Then

P=(3x+1)+(2x-1)+(4x+5)


This simplifies to give us,


P=3x+2x+4x+5-1+1


P=9x+5


<u>QUESTION 3h</u>

The given figure is a trapezium.

The perimeter is the distance around the whole trapezium.

Let P be the perimeter.

Then,

P=m+(n-1)+(2m-3)+(n+3)


We group like terms to get,

P=m+2m+n+n-3+3-1

We simplify to get,

P=3m+2n-1mm


QUESTION 3i

The figure is an isosceles triangle.

We add all the distance around the figure to obtain the perimeter.

Let P be the perimeter.


Then P=(2a-b)+(a+2b)+(a+2b)


We regroup the terms to get,

P=2a+a+a-b+2b+2b

This will simplify to give us the expression for the perimeter to be

P=4a+3bmm.


QUESTION 4a

The given figure is a square.


The area of a square is given by the formula;

Area=l^2

where l=2m is the length of one side of the square.


We substitute this value to obtain;

Area=(2m)^2


This simplifies to give the expression of the area to be,

Area=4m^2


QUESTION 4b

The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=5a cm is the length of the rectangle and w=6cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =5a \times 6


Area =30a cm^2


QUESTION 4c


The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=7y cm is the length of the rectangle and w=2x cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =7y \times 2x

The expression for the area is

Area =14xy cm^2


QUESTION 4d

The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=3p cm is the length of the rectangle and w=p cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =3p \times p

The expression for the area is

Area =3p^2 cm^2




See attachment for the continuation


andreyandreev [35.5K]4 years ago
4 0

Answer:

1a) P=(a+27) cm

1b) P=2(y+7) cm

1c) P=4(x+2) cm

1d) P=4b m

1e) P=16a cm

2a) A=6a cm^2

2b) A=7y cm^2

2c) A=8x cm^2

2d) A=b^2 m^2

2e) A=12a cm^2

3a) P=4x mm

3b) P=2(B+L) mm

3c) P=2(3q+p) mm

3d) P=20b mm

3e) P=6x mm

3f) P=(3m+10n) mm

3g) P=(9x+5) mm

3h) P=(3m+2n-1) mm

3i) P=(4a+3b) mm

4a) A=4m^2 cm^2

4b) A=30a cm^2

4c) A=14xy cm^2

4d) A=3p^2 cm^2

4e) A=20b cm^2

4f) A=30h^2 cm^2

5a) We bought altogether 3p pens and 4q pencils

5b) I have now 14a pears

5c) The total cost will be 40x cents

5d) You will have altogether 9m chocolates and 8n lollies


Step-by-step explanation:

Perimeter: P=?

1a) P=a cm+12 cm+15 cm=(a+12+15) cm→P=(a+27) cm

1b) P=2(y cm+7 cm)→P=2(y+7) cm

1c) P=2(2x cm+4cm)=2(2x+4) cm=2(2)(2x/2+4/2) cm→P=4(x+2) cm

1d) P=4b m

1e) P=5a cm+5a cm+6a cm=(5a+5a+6a) cm→P=16a cm

Area: A=?

2a) A=bh/2=(12 cm)(a cm)/2=12a cm^2/2→A=6a cm^2

2b) A=bh=(7 cm)(y cm)→A=7y cm^2

2c) A=bh=(2x cm)(4 cm)→A=8x cm^2

2d) A=s^2=(b m)^2=(b)^2 (m)^2→A=b^2 m^2

2e) A=bh/2=(6a cm)(4 cm)/2=(24a cm^2)/2→A=12a cm^2

3a) P=4(x mm)→P=4x mm

3b) P=2(B mm+L mm)→P=2(B+L) mm

3c) P=2(3q mm+p mm)→P=2(3q+p) mm

3d) P=4(5b mm)→P=20b mm

3e) P=3(2x mm)→P=6x mm

3f) P=3m mm+5n mm+5n mm=(3m+5n+5n) mm→P=(3m+10n) mm

3g) P=(4x+5) mm+(2x-1) mm+(3x+1) mm=(4x+5+2x-1+3x+1) mm→P=(9x+5) mm

3h) P=(2m-3) mm+(n-1) mm+(m) mm+(n+3) mm=(2m-3+n-1+m+n+3) mm→

P=(3m+2n-1) mm

3i) P=(2a-b) mm+(a+2b) mm+(a+2b) mm=(2a-b+a+2b+a+2b) mm→

P=(4a+3b) mm

4a) A=s^2=(2m cm)^2=(2)^2 (m)^2 (cm)^2→A=4m^2 cm^2

4b) A=bh=(5a cm)(6 cm)→A=30a cm^2

4c) A=bh=(7y cm)(2x cm)→A=14xy cm^2

4d) A=bh=(3p cm)(p cm)→A=3p^2 cm^2

4e) A=bh/2=(4b cm)(10 cm)/2=(40b cm^2)/2→A=20b cm^2

4f) A=bh/2=(10h cm)(6h cm)/2=(60h^2 cm^2)/2→A=30h^2 cm^2

5a) (p pens+3q pencils)+(2p pens+q pencils)=

p pens+3q pencils+2p pens+q pencils=(p+2p) pens+(3q+q) pencils=

3p pens and 4q pencils

5b) (10a pears)-(3a pears)+(7a pears)=10a pears-3a pears+7a pears=

(10a-3a+7a) pears=14a pears

5c) Total cost: T=4(5x cents)+4(3x cents)+4(2x cents)→

T=4(5x+3x+2x) cents=4(10x) cents→T=40x cents

5d) Total sweets: T=3(m chocolates+2n lollies)+2(3m chocolates+n lollies)→

T=3(m chocolates)+3(2n lollies)+2(3m chocolates)+2(n lollies)→

T=3m chocolates+6n lollies+6m chocolates+2n lollies→

T=(3m+6m) chocolates+(6n+2n) lollies→T=9m chocolates+8n lollies

You might be interested in
What is the equation of the line through (1,4) and (2,2)?<br> y= _x + __
aivan3 [116]

Answer:

y = -2x + 6

Step-by-step explanation:

y = mx + c

m = (2-4)/(2-1) = -2/1

m = -2

y = -2x + c

When x = 1, y = 4

4 = -2(1) + c

c = 4 + 2 = 6

y = -2x + 6

6 0
3 years ago
Which of the following are proper units of mass in the metric system
sammy [17]

kilogram and milligram are proper units of mass in the metric system . Anything with the suffix -gram is a mass measurement  Hope this helps!

7 0
4 years ago
a student claims -4i is the only root of a quadratic polynomial equation that has real coefficients whats the students mistake a
barxatty [35]

Answer:

word word word not the answer

Step-by-step explanation:

7 0
4 years ago
Someone please help!!
Zolol [24]
To find the area of a triangle, you multiply the base times the height and multiply it by 2.
In order to find the height, you need to do this in reverse.
1.multiply 24x2
2. Find possible multiples.
3. 4x12=48, 12(the base) is three times four, and 48/2 is 24.
Answer: the height of the triangle is 4
7 0
3 years ago
Read 2 more answers
How long does it take to travel 300 mi at a constant speed of 15 mi/h?
Luba_88 [7]
It would take 20 hours

300/15= 20


8 0
3 years ago
Read 2 more answers
Other questions:
  • I have a word problem with a pattern. I just can't figure it out. - On the first night, Kim's mom gave her a nickel, on the seco
    15·1 answer
  • Bradley scores 44 out of 58 in his french test. express this is a percentage
    6·1 answer
  • Which statement proves that PQRS is a parallelogram? The slopes of SP and RQ are both –2 and SP = RQ = . The slopes of RS and QP
    7·2 answers
  • In one study subjects were randomly given either 500 or 1000 milligrams of vitamin C daily, and the number of colds they came do
    8·1 answer
  • Simplify the expression completely. (5√50-3√200+3√18)
    7·1 answer
  • Hat function is represented by a line with slope −2 that passes through the point (0, 4)?
    13·1 answer
  • Which shows a correct set of steps for adding 6 1/4 and 3 5/16?<br><br> a<br> b<br> c<br> or<br> d
    13·1 answer
  • Paul had some candy to give his five children. He first took ten pieces for himself and then evenly divided the rest among his c
    8·1 answer
  • Please help ASAP! 5th grade math, will give brainliest! (No clue what I’m doing so please show your work on both of these)
    15·1 answer
  • 15 In the figure, O is the centre of the circle. The diameter of the circle, AB, is 14 cm, and
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!