Answer:
a. cosθ = ¹/₂[e^jθ + e^(-jθ)] b. sinθ = ¹/₂[e^jθ - e^(-jθ)]
Step-by-step explanation:
a.We know that
e^jθ = cosθ + jsinθ and
e^(-jθ) = cosθ - jsinθ
Adding both equations, we have
e^jθ = cosθ + jsinθ
+
e^(-jθ) = cosθ - jsinθ
e^jθ + e^(-jθ) = cosθ + cosθ + jsinθ - jsinθ
Simplifying, we have
e^jθ + e^(-jθ) = 2cosθ
dividing through by 2 we have
cosθ = ¹/₂[e^jθ + e^(-jθ)]
b. We know that
e^jθ = cosθ + jsinθ and
e^(-jθ) = cosθ - jsinθ
Subtracting both equations, we have
e^jθ = cosθ + jsinθ
-
e^(-jθ) = cosθ - jsinθ
e^jθ + e^(-jθ) = cosθ - cosθ + jsinθ - (-jsinθ)
Simplifying, we have
e^jθ - e^(-jθ) = 2jsinθ
dividing through by 2 we have
sinθ = ¹/₂[e^jθ - e^(-jθ)]
Answer:
30
Step-by-step explanation:
You multipy 5 by 3 by 2
We know that
The formula for combinations is
C=n!/[(n-r)!*r!]
where
n is the total number of objects you choose from
r is the number that you choose to arrange
in this problem
n=15 students
r=4 students
C=15!/[(15-4)!*4!]-----> C=15!/[11!*4!]---> (15*14*13*12*11!)/(11!*4*3*2*1)
C=(15*14*13*12)/(24)----->C=1365
the answer is
1365