Answer:
Explanation:
The following are the order of point from oldest to most recent
1. Atoms are tiny indivisible particles that make up all mater.
it is Postulate of Dalton's atomic theory. this theory was put forward in 1803
2. Negatively charged electrons are embedded in a mass of positive charge.
In 1897 J.J Thomson discovered that atom consist of tiny negatively charged particles called electrons that are uniformly spread in +vely charged matrix this model called as plum pudding model.
3. Atoms consist of mostly empty space with a dense nucleus of positive charge.
While doing experiment on gold foil Rutherford presented a model in 1909 and stated that atom consist mostly empty space with dense nucleus.
4. Electrons occupy specific energy levels surrounding a positively charged nucleus.
Niels Bohr in 1913 put forward a model to explain atomic orbitals/energy level. This is a postulate of Bohr model.
5. Electrons move about a positively charged nucleus in clouds that are defined by probabilities.
In 1926 Erwin Schrödinger explain the wave function of electrons and its probability.
Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).
It is b i think bc it looks like it would be it and my tudor helped me
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g
Answer:
e. UDP-glucose pyrophosphorylase catalyzes the reaction of glucose-I-phosphate and UTP to UDP-glucose and PPi
a. Pyrophosphatase converts PPi and water into two Pi
b. Glycogen synthase adds a glucose unit from UDP-glucose to glycogen, producing a larger glycogen molecule and UDP
Explanation:
Glycogen synthesis or glycogenesis is the process of synthesis of glycogen molecules from glucose molecules in living organisms. Glycogen is a polysaccharide storage form of glucose and helps to store excess glucose in the body form use when required by the body.
The synthesis of glycogen involves sugar nucleotides. Sugar nucleotides are compounds in which a sugar molecule is attached to a nucleotide through phosphate ester bond, resulting in the activation of the sugar molecule. The sugar nucleotides then are used as substrates for the polymerization of the monosaccharide sugars into disaccharides, oligosaccharides and polysaccharides.
In the synthesis of glycogen, glucose-6-phosphate from phosphorylation of free glucose by hexokinase is first isomerized to glucose-1-phosphate by phosphoglucomutase.
Glucose-1-phosphate is then converted to UDP-glucose by its reaction with UTP catalyse by UDP-glucose pyrophosphorylase. The reaction is favoured by the rapid hydrolysis of PPi produced to two molecules of inorganic phosphate by the enzyme pyrophosphatase.
Glycogen synthase then adds a glucose unit from UDP-glucose to a growing chain of glycogen, producing a larger glycogen molecule and free UDP.