The structure of isocynide is
N=C
What is the importance of VSEPR theory?
Valence bond theory describes the electronic structure of molecule .The theory says that electrons fills the atomic orbitals of an atom within a molecule .
In the structure of isocynide there are triple bonds between Nitrogen and carbon . The bond length is 115.8pm and the bond angle is 180°. There is two pi and one sigma bond .
to learn more about VSEPR theory click here brainly.com/question/23129240
#SPJ9
<h2>Greetings!</h2>
Because 1 atm is equal to 760mm Hg, you can use the following equation to find the correct atm measurement:
atm x 760
Simply plug the values given in:
0.43 x 760 = 326.8mm Hg
<h2>Hope this helps!</h2>
The appropriate number of bonds around each carbon atom are four covalent bonds
Please note that carbon has four valence electrons in its outermost shell
<h3>What is an element?</h3>
An element is a substance which cannot be split into simpler forms by an ordinary chemical process. This simply goes to say that elements are substances which cannot be decomposed into simpler substances by ordinary chemical reactions.
An atom is the smallest unit or part of an element which can take part in a chemical reaction.
On a general note, elements are classified as thus:
- Metals, non-metal, and metalloid.
- The extreme left side elements in the periodic table are metals, for example, aluminum, sodium, calcium, caesium, etc.
- However, elements on the right side are generally referred to as non-metals, carbon, chlorine, oxygen,
So therefore, the appropriate number of bonds around each carbon atom are four covalent bonds
Complete question:
What is the appropriate number of bonds around each carbon atom?
Learn more about atoms and elements:
brainly.com/question/6258301
#SPJ1
Answer:
D) Please look below at the cart to cheak your answer!
Hope this helps! mark me brainliset!
God bless
<h3>
Answer:</h3>
Empirical formula is CrO
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of sample of Chromium as 7.337 gram
- Mass of the metal oxide formed as 9.595 g
We are required to determine the empirical formula of the metal oxide.
<h3>Step 1 ; Determine the mass of oxygen used </h3>
Mass of oxygen = Mass of the metal oxide - mass of the metal
= 9.595 g - 7.337 g
= 2.258 g
<h3>Step 2: Determine the moles of chromium and oxygen</h3>
Moles of chromium metal
Molar mass of chromium = 51.996 g/mol
Moles of Chromium = 7.337 g ÷ 51.996 g/mol
= 0.141 moles
Moles of oxygen
Molar mass of oxygen = 16.0 g/mol
Moles of Oxygen = 2.258 g ÷ 16.0 g/mol
= 0.141 moles
<h3>Step 3: Determine the simplest mole number ratio of Chromium to Oxygen</h3>
Mole ratio of Chromium to Oxygen
Cr : O
0.141 mol : 0.141 mol
1 : 1
Empirical formula is the simplest whole number ratio of elements in a compound.
Thus the empirical formula of the metal oxide is CrO