The balanced equation of the reaction is:
O3(g) + NO (g) → O2 (g) + NO2 (g)
Then the ratios of reaction is 1 mol O3 : 1 mol NO : 1 mol O2 : 1 mol NO2
If you have initially 0.05 M of O3 and 0.02 M of NO, the reaction will end when all the NO is consumed.
The by the stoichiometry 0.02 mol of O3 will be consumed in 8 seconds.
And the rate of reaction is change in concetration divided by the time.
The change in concentration in O3 is 0.02 M
Then, the rate respect O3 is 0.02 M / 8 seconds = 0.0025 M/s
Fe3N2, also known as Iron (II) nitride, is an ionic compound.
Ionic compounds are compounds that consists of metals and non-metals bonded with ionic bonds. The metal ion gives up electron(s) to the non-metals.
Since iron is a metal and nitrogen is an non-metal, the bond they would form would be an ionic bond. Iron gives up 2 electrons to form iron(II) ion, while nitrogen gains 3 electrons to form nitride ion. Since one iron cannot let a nitrogen gain 3 electrons, so in the compound, there would be 3 iron (ii) ions that has given up 6 electrons in total while 2 nitride ions have gained 6 electrons in total.
Answer:
E. better schools
Explanation:
This contributes the most to human development in his community because it provides children with more resources and better opportunities than a sub-par education system. If a community is able to better their school system, they will begin to see a lot of positive changes in their area.
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles
If the forces are equal and in opposite directions, the net force will equal zero.
Consider a tug-of-war team. If they are pulling with equal forces against each other, the red cloth on the rope will not move.
<em>F = ma
</em>
The cloth is not moving, so <em>a = </em>0 and the net force <em>F = </em>0.