Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
I believe the answer is potential difference
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
Answer:
Options A, D and E....make up cell theory
Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U