Answer:
Time elapsed
Explanation:
Acceleration is a vector quantity. It is defined as:

where
v is the final velocity
u is the initial velocity
t is the time elapsed
Acceleration is measured in meters per second squared (m/s^2). It must be noticed that acceleration is a vector, so it also has a direction. In particular:
- when acceleration is negative, it means that the object is slowing down, so acceleration is in opposite direction to the velocity
- when acceleration is positive, it means that the object is speeding up, so acceleration is in the same direction as the velocity
Answer:
P₁ = 2.3506 10⁵ Pa
Explanation:
For this exercise we use Bernoulli's equation and continuity, where point 1 is in the hose and point 2 in the nozzle
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
A₁ v₁ = A₂ v₂
Let's look for the areas
r₁ = d₁ / 2 = 2.25 / 2 = 1,125 cm
r₂ = d₂ / 2 = 0.2 / 2 = 0.100 cm
A₁ = π r₁²
A₁ = π 1.125²
A₁ = 3,976 cm²
A₂ = π r₂²
A₂ = π 0.1²
A₂ = 0.0452 cm²
Now with the continuity equation we can look for the speed of water inside the hose
v₁ = v₂ A₂ / A₁
v₁ = 11.2 0.0452 / 3.976
v₁ = 0.1273 m / s
Now we can use Bernoulli's equation, pa pressure at the nozzle is the air pressure (P₂ = Patm) the hose must be on the floor so the height is zero (y₁ = 0)
P₁ + ½ ρ v₁² = Patm + ½ ρ v₂² + ρ g y₂
P₁ = Patm + ½ ρ (v₂² - v₁²) + ρ g y₂
Let's calculate
P₁ = 1.013 10⁵ + ½ 1000 (11.2² - 0.1273²) + 1000 9.8 7.25
P₁ = 1.013 10⁵ + 6.271 10⁴ + 7.105 10⁴
P₁ = 2.3506 10⁵ Pa
Answer:
True
Explanation:
If two partners don't communicate they'll grow apart and it may lead to one or the other cheating.
Explanation:
When an object moves in a circular path, it will have circular acceleration. Its magnitude of acceleration is given by :

Since, 

T is the time period
R is the radius of the circular path
To increase the centripetal acceleration bu a factor of 1.5 or 3/2, radius of circle must be increase by a factor of 6 and T is increased by a factor of 2 such that,
R'=6R and T'=2T
So,




Hence, this is the required solution.
Answer: the particles are more orderly in region 1
Explanation: region 1 is when the substance is a solid and as it is heated the particles move further apart and have more kinetic energy.