<span>Seismologists would be your answer. </span>
Answer:
2.35 m/s²
Explanation:
Given that
Mass of the smaller crate, m₁ = 21 kg
Mass of the larger crate, m₂ = 90 kg
Tensión of the rope, T = 261 N
We know that the sum of all forces for the two objects with a force of friction F and a tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F, where m and a are the masses and accelerations respectively.
1) no sliding can also mean that:
a₁ = a₂ = a
This makes us merge the two equations written above together as:
m₂a = T - m₁a
If we then solve for a, we would have something like this
a = T / (m₁+m₂)
a = 261 / (21 + 90)
a = 261 / 111
a = 2.35 m/s²
Therefore, the needed acceleration of the small crate is 2.35 m/s²
Answer: 0.24g/ml
Explanation:
Given that:
Volume of water displaced = 23.5 ml
Mass of cork = 5.7 g
Density of the cork = ?
Recall that density is obtained by dividing the mass of a substance by the volume of water displaced.
i.e Density = Mass/volume
Density = 5.7g /23.5ml
Density = 0.24g/ml
Thus, the density of the piece of cork is 0.24g/ml
Answer:
Use the principle of momentum
Initial momentum = final momentum
Momentum formula = Mass * Velocity
Explanation:
The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944