1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
6

What does Hooke's law say about the relationship of a spring to the force applied to it?

Physics
1 answer:
hoa [83]3 years ago
6 0

Answer:

Explanation:Hooke's law states that " if the elastic limit of an elastic material is not exceeded, the extension,e is directly proportional to the applied force or load.

You might be interested in
A 126- kg astronaut (including space suit) acquires a speed of 2.70 m/s by pushing off with her legs from a 1800-kg space capsul
jeka94

The change in the speed of the space capsule will be -0.189 m/s.

The average force exerted by each on the other will be 567 N.

The kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

<h3>Given:</h3>

Mass of the astronaut, m_a = 126 kg

Speed he acquires, v_{a}  = 2.70 m/s

Mass of the space capsule, m_{c} = 1800kg

The initial momentum of the astronaut-capsule system is zero due to rest.

P_f = m_av_a + m_cv_c

P_I = 0

m_av_a + m_cv_c = 0

v_c =\frac{- m_a v_a}{m_c}}\\\\

   = \frac{126* 2.70}{1800}

   = - 0.189 m/s

Therefore,

According, to the impulse-momentum theorem;

FΔt = ΔP

ΔP = m Δv

ΔP = 126×2.70

    = 340.2 kgm/sec

t is time interval = 0.600s

F = ΔP/Δt

F = 340.2/0.600

  = 567 N

Therefore, the average force exerted by each on the other will be 567 N.

The Kinetic Energy of the astronaut;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2} × 126 × (2.70) ^2

     = 459.27 J

The Kinetic Energy of the capsule;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2}×1800×(0.189) ^2

     = 32.14 J

Therefore, the kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

Learn more about kinetic energy here:

brainly.com/question/26520543

#SPJ1

3 0
1 year ago
Help please !!<br>I need help with this!
belka [17]
Hello Again! I think the Answer might be 220 m! ( 1/2) ( 21 m/s + 0 m/s) (21 s) = 220 m
6 0
2 years ago
The temperature light will come on in your vehicle when
nikitadnepr [17]
If your engine is not at the right temprature, usually when it is too hot.
5 0
3 years ago
A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.
arlik [135]

Answer:

part (a) v = 1.7 m/s towards right direction

part (b) Not an elastic collision

part (c) F = -228.6 N towards left.

Explanation:

Given,

  • Mass of the first puck = m_1\ =\ 5\ kg
  • Mass of the second puck = m_2\ =\ 3\ kg
  • initial velocity of the first puck = u_1\ =\ 3\ m/s.
  • Initial velocity of the second puck = u_2\ =\ -1.5\ m/s.

Part (a)

Pucks are stick together after the collision, therefore the final velocities of the pucks are same as v.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ =\ (m_1\ +\ m_2)v\\\Rightarrow v\ =\ \dfrac{m_1u_1\ +\ m_2u_2}{m_1\ +\ m_2}\\\Rightarrow v\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5}{5\ +\ 1.5}\\\Rightarrow v\ =\ 1.7\ m/s.

Direction of the velocity is towards right due to positive velocity.

part (b)

Given,

Final velocity of the second puck = v_2\ =\ 2.31\ m/s.

Let v_1 be the final velocity of first puck after the collision.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ +\ m_1v_1\ +\ m_2v_2\\\Rightarrow v_1\ =\ \dfrac{m_1u_1\ +\ m_2u_2\ -\ m_2v_2}{m_1}\\\Rightarrow v_1\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5\ -\ 1.5\times 2.31}{5}\\\Rightarrow v_1\ =\ 1.857\ m/s.

For elastic collision, the coefficient of restitution should be 1.

From the equation of the restitution,

v_1\ -\ v_2\ =\ e(u_2\ -\ u_1)\\\Rightarrow e\ =\ \dfrac{v_1\ -\ v_2}{u_2\ -\ u_1}\\\Rightarrow e\ =\ \dfrac{1.857\ -\ 2.31}{-1.5\ -\ 3}\\\Rightarrow e\ =\ 0.1\\

Therefore the collision is not elastic collision.

part (c)

Given,

Time of impact = t = 25\times 10^{-3}\ sec

we know that the impulse on an object due to a force is equal to the change in momentum of the object due to the collision,

\therefore I\ =\ \ m_1v_1\ -\ m_1u_1\\\Rightarrow F\times t\ =\ m_1(v_1\ -\ u_1)\\\Rightarrow F\ =\ \dfrac{m_1(v_1\ -\ u_1)}{t}\\\Rightarrow F\ =\ \dfrac{5\times (1.857\ -\ 3)}{25\times 10^{-3}}\\\Rightarrow F\ =\ -228.6\ N

Negative sign indicates that the force is towards in the left side of the movement of the first puck.

3 0
3 years ago
Help is requested. Will give brainliest to anyone who answers correctly. 
sp2606 [1]
The answer should be d because they are constantly rotating
4 0
3 years ago
Other questions:
  • A Micro –Hydro turbine generator is accelerating uniformly from an angular velocity of 610 rpm to its operating angular velocity
    10·1 answer
  • Explain the forces that keep a rock balanced on a tiny pedestal. Please help me with this!
    13·1 answer
  • a rock is tied to the end of the string and swung in a circle with a radius of 1/2 meter. if the rock goes around once in 1/10 o
    14·1 answer
  • The dimensions of a room are 16.40 m long, 4.5 m wide and 3.26 m high. What is the volume of the room in cubic meters? Express y
    5·1 answer
  • A thin Nichrome wire connected to an ammeter surrounds a region of time-varying magnetic flux, and the ammeter reads 13 amperes.
    14·1 answer
  • Consider a basketball player spinning a ball on the tip of a finger. If a player performs 1.91 J1.91 J of work to set the ball s
    9·1 answer
  • Which type of waves cannot travel through a vacuum visible light waves x-ray waves gamma ray ray waves or sound waves
    6·1 answer
  • A motorist traveling at 12 m/s encounters a deer in the road 39 m ahead. If the maximum acceleration the vehicle’s brakes are ca
    10·1 answer
  • How deep is the outer core beneath the surface
    11·1 answer
  • The spacecraft that really gave scientists their first good close-up look at the planet Mercury was:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!