Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Answer:
Explanation:
Single-phase transformers can operate to either increasing or decreasing the voltage applied to the primary winding. When a transformer is used to “increase” the voltage on the secondary winding with respect to the primary, it is called a Step-up transformer
Answer:
Yes, the car has acceleration.
Explanation:
Acceleration is defined as the rate of change of velocity. The velocity is a vector quantity. If a car is moving with constant speed but taking a turn, it means the velocity is changing, so the car have some acceleration.
In series connection in orde to find the total resistance we add all the resistance capacity but in parallel, we take the 1/R and resistance = V hence the series connection takes up more power,