Shein. but i heard that kids work in a workshop and are forced to make the clothing. and i bought from them but i ddi not know and ya but thank you timmy for the t shirt
Answer:
Explanation:
The described situation is is related to vertical motion (and free fall). So, we can use the following equation that models what happens with this rock:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Then, isolating
and taking into account
:
(2)
(3)
Finally:
(4) This is the acceleration due gravity in Planet X
Answer: 653.33 nm ; 1875, 24 nm
Explanation: For the first case we have to use the Balmer series for the hydrogen when the atom falls from the n = 3 to the n = 2. So for the second transtions for the hydrogen we use the Paschen serie. To do the calculation we need to know the Ryberg constant that is equal to 1.097 * 10^7 m^-1. In the attach is shown the expression for spectral series used for calculation.
Answer:
a) # buses = 7
Explanation:
For this exercise we use the kinematic equations, let's find the time it takes to reach the same height
y =
t - ½ g t²
Let's decompose the speed, with trigonometry
v₀ₓ = v₀ cos θ
= v₀ sin θ
v₀ₓ = 40 cos 32
v₀ₓ = 33.9 m / s
= 40 sin32
= 21.2 m / s
When it arrives it is at the same initial height y = 0
0 = (
- ½ gt) t
That has two solutions
t = 0 when it comes out
t = 2
/ g when it arrives
t = 2 21.2 /9.8
t = 4,326 s
We use the horizontal displacement equation
x = vox t
x = 33.9 4.326
x = 146.7 m
To find the number of buses we can use a direct proportions rule
# buses = 146.7 / 20
# buses = 7.3
# buses = 7
The distance of the seven buses is
L = 20 * 7 = 140 m
b) let's look for the scope for this jump
R = vo2 sin2T / g
R = 40 2 without 2 32 /9.8
R = 146.7 m
As we can see the range and distance needed to pass the seven (7) buses is different there is a margin of error of 6.7 m in favor of the jumper (security)
To give a solution to this exercise, it is necessary to apply Gauss's magnetic law in which he proposes the magnetic flux through closed surface is zero.
Our data given are as follows:
Inward flux = 13Wb
Outward flux = 22Wb
Since the field of the second flow is directed OUT of the curved side we need to subtract the values, therefore,
Flux = 22-13
