Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
D.
The reading between 7N and 8N would have to be 7.5N. Answers A and B are much to small and answer C is way to big.
Answer:
Salt dissolving
Explanation:
Dis solving salt in water doesn't change it's chemical composition
Answer:
The magnitude of
is 4 V and phase of input voltage is zero
Explanation:
Given:
Output voltage 
Resistance
kΩ
Voltage gain 
For finding feedback resistance we use gain equation
Gain equation for non inverting op-amp is given by,


≅ 10 kΩ
For finding input voltage we use,


V
The Phase of
is zero because output voltage phase is 360°
Therefore, the magnitude of
is 4 V and phase of input voltage is zero