Answer:
Step-by-step explanation:
My approach was to draw out the probabilities, since we have 3 children, and we are looking for 2 boys and 1 girl, the probabilities can be Boy-Boy-Girl, Boy-Girl-Boy, and Girl-Boy-Boy. So a 2/3 chance if you think about it, your answer 2/3 can't be correct. If we assume that boys and girls are born with equal probability, then the probability to have two girls (and one boy) should be the same as the probability to have two boys and one girl. So you would have two cases with probability 2/3, giving an impossible 4/3 probability for both cases. Also, your list "Boy-Boy-Girl, Boy-Girl-Boy, and Girl-Boy-Boy" seems strange. All of those are 2 boys and 1 girl, so based on that list, you should get a 100 percent chance. But what about Boy-Girl-Girl, or Girl-Girl-Girl? You get 2/3 if you assume that adjacencies in the (ordered) list are important, i.e., "2 boys and a girl" means that the girl was not born between the boys.
Answer:

Time for bacteria count reaching 8019: t = 2.543 hours
Step-by-step explanation:
To find the composite function N(T(t)), we just need to use the value of T(t) for each T in the function N(T). So we have that:




Now, to find the time when the bacteria count reaches 8019, we just need to use N(T(t)) = 8019 and then find the value of t:


Solving this quadratic equation, we have that t = 2.543 hours, so that is the time needed to the bacteria count reaching 8019.
Answer:yes
Step-by-step explanation:
Solve the second equation using the given choices:
Y = 3x + 6
Replacing x with the given choices and matching the y values the answer is the second choice
(0,6) and (-2,0)
Answer:
79/96
Step-by-step explanation: