Answer:
-1
Explanation:
Electrons have a negative charge and protons have a positive charge. (+11) + (-12) = -1
Answer:
Rotational inertia of the object is, 
Explanation:
Given that,
Mass of the object, m = 20 kg
Torsion constant of the wire, K = 0.85 N-m
Number of cycles, n = 69
Time, t = 66 s
To find,
The rotational inertia of the object.
Solution,
There exists a relationship between the moment of inertia, time period and the torsion constant of the spring is given by :

Here I is the moment of inertia
T is the time period, and it is equal to the number of cycles per unit time



So, the rotational inertia of the object is
.
Answer:
Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C
Explanation:
given,
surface charge (q) = 3.3 × 10⁻⁶ C
to calculate electric flux = ?
a) radius = 0.76 m
area of sphere = 4 π r²
electric flux = 

electric flux = 
flux = 0.373 × 10 ⁶ N m²/C
electric flux in the other two cases will also be same as electric flux is independent of area
so, Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C
Answer:
M2 = 278.06 kg
Explanation:
We calculate the weight of M1
W=m*g
Where
m: mass (kg)
g: acceleration due to gravity (m/s²)
W₁=288* 9.8= 2822.4 N
Look at the attached graphic
We calculate the x-y components of the weight :
W₁x= 2822.4*sin41° N =1851.66 N
W₁y= 2822.4 *cos41° N = 2130.09 N
We apply Newton's first law for the balance in M1:
Σ Fy=0
Fn-W₁y=0 , Fn: normal force
Fn=W₁y=2130.09N
Friction Force = Ff=μs *Fn = 0.41*2130.09 =873.34 N
Σ Fx=0
T- W₁x- Ff=0
T= 1851.66 + 873.34
T= 1851.66 + 873.34
T=2725 N
We apply Newton's first law for the balance in M2:
Σ Fy=0
T- W₂ =0
W₂ = T = 2725 N
W₂ = M2*g
M2 = W₂/g
M2 = 2725/9.8
M2 = 278.06 kg
First we'll calculate the energy it posesses
G.P.E = mgh = 0.2 * 10 * 100 = 200 J
Now we'll calculate the temperature rise
Q = m * c * (t2 - t1)
Q/(m * c) = t2-t1
t2 = Q/(m * c) + t1 = 200/(0.2 * 400) + 0 = <span>2.5 C</span>