<h2>The option a is most appropriate </h2>
Explanation:
The total pressure due to liquid column at any place is the sum of
( i ) pressure due to liquid column called hydrostatic pressure
( ii ) the pressure due to air column above the liquid column , which is called the static pressure
Thus total pressure is the sum of hydrostatic and static pressure .
Thus the option a is most appropriate
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in the above equation
So,

Hence, this is the required solution.
Physical. You are only moving the matter (snow) into a different shape. Hope this helps!
Answer: A 2m/s^2
Steps: Formula for acceleration. (Velocity Final - Initial Velocity) / Time
(24 - 0) / 12 = 2
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>