Answer:
270 Joules
Explanation:
The specific heat capacity equation will be used for this question i.e.
Q = m. c. ΔT
Where; Q = Amount of heat
m = mass of substance
C = specific heat capacity of
substance
ΔT = change in temperature
(Final temp - initial temp)
However, for this unknown metal, we need to find the specific heat first by saying; C = Q / mΔT
Q= 135J, C=?, m= 10g, ΔT = (40-25 = 15°C)
C = 135 / 15 × 10
C = 135/150
C = 0.9 J/g°C
If the specific heat capacity of the unknown metal is 0.9 J/g°C, then at a mass of 20.0g, and a ΔT of 15°C, the amount of heat needed is:
Q = m. c. ΔT
Q = 20 × 0.9 × (40-25)
Q = 18 × 15
Q = 270J
270 Joules of heat is needed to increase the temperature of 20g of the metal from 25 - 40°C
Answer:
If mass increases, force increases.
Explanation:
hope this helps, pls mark brainliest :D
Answer:
80g=0.08kg
20cm=0.02m
density=m/v
= 0.08/0.02
=4kg/m^3
it is less than density of water so it floats
Answer:
Moles of substance are defined ratio of the given mass of the substance to the molar mass of the substance.
Given :
The 52.06 grams of carbon dioxide.
To find :
The moles of carbon dioxide.
Solution:
The mass of carbon dioxide = 52.06 g
The molar mass of carbon dioxide = 44.01 g/mol
The moles of carbon dioxide:
1.183 moles of carbon dioxide are there in 52.06 g of carbon dioxide.
Explanation:
Answer:
0.295 mol/L
Explanation:
Given data:
Volume of solution = 3.25 L
Mass of BaBr₂ = 285 g
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of solute:
Number of moles = mass/ molar mass
Molar mass of BaBr₂ = 297.1 g/mol
Number of moles = 285 g/ 297.1 g/mol
Number of moles= 0.959 mol
Molarity:
M = 0.959 mol / 3.25 L
M = 0.295 mol/L