You slap some dough on to a beach and wait for it to become bread
Answer : The number of iron atoms present in each red blood cell are, 
Explanation :
First we have to calculate the moles of iron.

Now we have to calculate the number of iron atoms.
As, 1 mole of iron contains
number of iron atoms
So, 0.0519 mole of iron contains
number of iron atoms
Now we have to calculate the number of iron atoms are present in each red blood cell.
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Therefore, the number of iron atoms present in each red blood cell are, 
The chemical reaction would be:
C3H8 + 5O2 = 3CO2 + 4H2O
For this case, we assume that gas is ideal thus in every 1 mol the volume would be 22.41 L. We calculate as follows:
28.7 L C3H8 ( 1 mol / 22.41 L ) ( 4 mol H2O / 1 mol C3H8 ) ( 18.02 g / mol ) = 92.31 g H2O produced
Hope this answers the question.
The question requires us to draw the structural formula, provide the name and highlight any functional groups for the compound: diethyl ether.
The molecule diethyl ether can be represented as it follows, with two ethyl groups (-CH2CH3) bonded to a oxygen atom:
Note that the functional group ether (R-O-R) is present in the structre and highlighted in blue in the image. The official name of diethyl ether is ethoxyethane.
<span>This was one of the old regents. I didn't get this at first glance too so I searched for it and I got this site. lol. I know what to do now. To get a higher boiling point, you have to find which solution has the most moles. Since SO4, PO4, and NO3 are all polyatomic ions, they only count as one mole. </span>