Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
They are measured in joules, calories, and kilocalories
Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly
It is 10.20 m from the ground.
<u>Explanation:</u>
<u>Given:</u>
m = 0.5 kg
PE = 50 J
We know that the Potential energy is calculated by the formula:

where m is the is mass in kg; g is acceleration due to gravity which is 9.8 m/s and h is height in meters.
PE is the Potential Energy.
Potential Energy is the amount of energy stored when an object is stationary.
Here, if we substitute the values in the formula, we get

50 = 0.5 × 9.8 × h
50 = 4.9 × h

h = 10.20 m