Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ =
A dose of Diphenhydramine hydrochloride, also known as Benadryl, would be active for about 4 to 6 hours in the body while it is excreted completely out the body within 1 day.It is soluble in water, odorless and a crystalline white powder. It is used as a cure for motion sickness and antihistamine.
Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects
Here,
Put the value into the formula
Hence, The value of the average convection coefficient is 20 W/Km².
Answer:
real, inverted, and smaller than the object
Explanation:
When the object is placed beyond the center of curvature, the image will formed between the focus and the center of curvature. The size of the image is diminished and its nature is real and inverted.
The whole description is shown in the attached figure. It is clear that the size of the image is smaller than the object.