Most everyday objects have as many plus charges as they have minus charges
Answer:
G.) The number atoms of that element in the molecule
Explanation:
F is incorrect because the coefficient represents the amount of one type of molecule, not the subscript
G is correct because subscripts represent how many atoms of that element are present in that single molecule
H is incorrect because energy is not represented in this simple type of equation
J is incorrect because it doesn't even make sense
Answer:
Animals must eat other plants or animals to obtain the <u>energy</u> stored in the food
Explanation:
One classification of living organisms, according to the way they obtain energy, is that of autotrophs and heterotrophs. The first group is represented by plants, which process their own nutrients from inorganic matter.
<u>Animals -heterotrophes- are unable to process their own nutrients</u>, so they must obtain them from other organisms, either plants or animals. External food sources provide them with nutrients, which contain the energy substrate needed to perform their vital functions.
Learn more:
Autotrophs and heterotrophs brainly.com/question/7695115
Answer:
As we are converting 220V AC into a 5V DC, first we need a step-down transformer to reduce such high voltage. Here we have used 9-0-9 1A step-down transformer, which convert 220V AC to 9V AC. In transformer there are primary and secondary coils which step up or step down the voltage according to the no of turn in the coils.
Selection of proper transformer is very important. Current rating depends upon the Current requirement of Load circuit (circuit which will use the generate DC). The voltage rating should be more than the required voltage. Means if we need 5V DC, transformer should at least have a rating of 7V, because voltage regulator IC 7805 at least need 2V more i.e. 7V to provide a 5V voltage.
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.