10% energy is transferred from the prey to eagle and 90% energy is lost in the enviorment .
Answer:
(a) 23.946 kV
(b) -0.077 J
Explanation:
(a) The electric potential is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1 = q2 = 1.60*10^{-6}C
r1 and r2 are the distance from the charges to the point in which electric potential is evaluated.
Firs, you calculate the distance r1 and r2 by taking into account the position of the charges

Next, you replace the values of the parameters to calculate V:

(b) The potential electric energy is given by:
![U_T=U_{1,2}+U_{1,3}+U_{2,3}\\\\U_T=k\frac{q_1q_2}{r_{1,2}}+k\frac{q_1q_3}{r_{1,3}}+k\frac{q_2q_3}{r_{2,3}}\\\\r_{1,2}=2.00m\\\\r_{1,3}=1.20m\\\\r_{2,3}=1.20m\\\\U_T=(8.98*10^9)[\frac{(1.6*10^{-6})^2}{2.00m}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}]J\\\\U_T=-0.077J](https://tex.z-dn.net/?f=U_T%3DU_%7B1%2C2%7D%2BU_%7B1%2C3%7D%2BU_%7B2%2C3%7D%5C%5C%5C%5CU_T%3Dk%5Cfrac%7Bq_1q_2%7D%7Br_%7B1%2C2%7D%7D%2Bk%5Cfrac%7Bq_1q_3%7D%7Br_%7B1%2C3%7D%7D%2Bk%5Cfrac%7Bq_2q_3%7D%7Br_%7B2%2C3%7D%7D%5C%5C%5C%5Cr_%7B1%2C2%7D%3D2.00m%5C%5C%5C%5Cr_%7B1%2C3%7D%3D1.20m%5C%5C%5C%5Cr_%7B2%2C3%7D%3D1.20m%5C%5C%5C%5CU_T%3D%288.98%2A10%5E9%29%5B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%5E2%7D%7B2.00m%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%5DJ%5C%5C%5C%5CU_T%3D-0.077J)
HEYA!!!
The Standard Unit of magnetic field is TESLA.
Hope it helps you.
:)
The differential distribution of ions across the cell membrane is due to the "resting membrane potential".
<u>Option: C</u>
<u>Explanation:</u>
The unequal allocation of charged particles like ions between the internal and external portion of cell, and by the varying membrane permeability to various ion forms, understood as resting membrane potential.
Within a sleeping brain, Na+ and K+ ions exhibit concentration gradients throughout the membrane, which push their gradients down through channels, resulting in a differentiation of the charges that generates the resting potential. With K+ than Na+ ions, the membrane is even more permeable, so the resting potential is similar to potassium ion's equilibrium potential.
The work done by a system on a different body is equal to the product of the force exerted and the distance that the body has move in parallel to the force exerted. In this item, we have to determine first the distance and multiply it with the given force equal to 750N.