Answer:
The speed of the block when it has returned to the bottom of the ramp is 6.56 m/s.
Explanation:
Given;
mass of block, m = 4 kg
coefficient of kinetic friction, μk = 0.25
angle of inclination, θ = 30°
initial speed of the block, u = 5 m/s
From Newton's second law of motion;
F = ma
a = F/m
Net horizontal force;
∑F = mgsinθ + μkmgcosθ

At the top of the ramp, energy is conserved;
Kinetic energy = potential energy
¹/₂mv² = mgh
¹/₂ v² = gh
¹/₂ x 5² = 9.8h
12.5 = 9.8h
h = 12.5/9.8
h = 1.28 m
Height of the ramp is 1.28 m
Now, calculate the speed of the block (in m/s) when it has returned to the bottom of the ramp;
v² = u² + 2ah
v² = 5² + 2 x 7.022 x 1.28
v² = 25 + 17.976
v² = 42.976
v = √42.976
v = 6.56 m/s
Therefore, the speed of the block when it has returned to the bottom of the ramp is 6.56 m/s.
Answer:
lunar node in other words is either of the two orbital nodes of the Moon, that is, the two points at which the orbit of the Moon intersects the ecliptic. The ascending node is where the Moon moves into the northern ecliptic hemisphere, while the descending node is where the Moon enters the southern ecliptic hemisphere
Cesium has the least ionization energy and can donate electrons very easily !