<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer:
4
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of Earth
= Mass of Moon
r = Distance between Earth and Moon
Old gravitational force

New gravitational force

Dividing the equations

The ratio is 
The new force would be 4 times the old force
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.
The formula for velocity vf = vi + at
First list your given information
2m/s Is your initial velocity (vi)
6m/s is you final velocity (vf)
2 seconds is your time (t)
Since you want the a for acceleration get a by itself
a = (vf-vi)/t
So a= (6-2)/2
a= 4/2
a=2
Now units
the units for acceleration are m/s

2m/s