Linear expansivity is a type of thermal expansion. It is described by a fraction that represents the fractional increase in length of a thin beam of a material exposed to a temperature increase of one degree Celsius. ... Linear expansivity is used in many real world applications.
Answer:
Elements are arranged in the table by increasing atomic number.
Explanation:
In the modern periodic table, each element is represented by its chemical symbol. The number above each symbol is its atomic number.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
Answer:
6.13428 rev/s
Explanation:
= Final moment of inertia = 4.2 kgm²
I = Moment of inertia with fists close to chest = 5.7 kgm²
= Initial angular speed = 3 rev/s
= Final angular speed
r = Radius = 76 cm
m = Mass = 2.5 kg
Moment of inertia of the skater is given by

In this system the angular momentum is conserved

The rotational speed will be 6.13428 rev/s
Do you have a picture then I could determine 1 millimeter