Answer:
200,000 and 20,000,000
Explanation:
Substituting the values into the equation of momentum, we get that the momentum is p = mv = 20,000*10 = 200,000. Using the equation provided to solve for the force the truck experienced, we find: 20,000*10/0.01 = 20,000,000.
I hope this helps!
Pushing, pulling is the answer
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
First, we calculate for the weight of the object by multiplying the given mass by the acceleration due to gravity which is equal to 9.8 m/s²
Weight = (14 kg)(9.8 m/s²)
Weight = 137.2 N
The component of the weight that is along the surface of the inclined plane is equal to this weight times the sine of the given angle.
Weight = (137.2 N)(sin 52°)
weight = 108.1 N
Answer:
b. Jupiter’s greater gravity has compressed the layers, so they are closer together there.
Explanation:
The value for Jupiter mass is 1.8981×10²⁷kg, while the mass of Saturn is 5.6832×10²⁶kg, so the different layers of clouds in Jupiter will be submitted to a greater gravitational pull because it has a bigger mass, as is established in the law of universal gravitation:
(1)
Where m1 and m2 are the masses of two objects, G is the gravitational constant and r is the distance between the two objects.
As it can be seen in equation 1, the gravitational force is directly proportional to the product of the masses of the objects, so if the mass increase the gravitational force will do it too.
For the case of Saturn, it has a lower mass so its layers of clouds will suffer a weaker gravitational pull. That leads to the three clouds being more spacing that the ones of Jupiter.