Answer:
The correct answer is -
A (the entire green box): Chemical Equation
B (the blue box): Reactants
C (the arrow): Reacts to Form
D (the number): Coefficient
E (the purple box): Products
Explanation:
The chemical reaction of burning methane and oxygen is as follows;
Here, the green part A is the chemical equation that includes various parts that are reactants B, methane, and oxygen, C is an arrow that indicates the formation of products.
2 is here coefficient that indicates the moles of the oxygen which forms carbon dioxide and water in box E is products
Angry sound level = 70 db
Soothing sound level = 50 db
Frequency, f = 500 Hz
Assuming speed of sound = 345 m/s
Density (assumed) = 1.21 kg/m^3
Reference sound intensity, Io = 1*10^-12 w/m^2
Part (a): Initial sound intensity (angry sound)
10log (I/Io) = Sound level
Therefore,
For Ia = 70 db
Ia/(1*10^-12) = 10^(70/10)
Ia = 10^(70/10)*10^-12 = 1*10^-5 W/m^2
Part (b): Final sound intensity (soothing sound)
Is = 50 db
Therefore,
Is = 10^(50/10)*10^-12 = 18*10^-7 W/m^2
Part (c): Initial sound wave amplitude
Now,
I (W/m^2) = 0.5*A^2*density*velocity*4*π^2*frequency^2
Making A the subject;
A = Sqrt [I/(0.5*density*velocity*4π^2*frequency^2)]
Substituting;
A_initial = Sqrt [(1*10^-5)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-8 m = 69.7 nm
Part (d): Final sound wave amplitude
A_final = Sqrt [(1*10^-7)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-9 m = 6.97 nm
In order to find the solid, you would want the object in which sound travels the fastest
In this case, since in object C, the speed of sound is the fastest, it is the most likely to be a solid
So object C is most likely to be a solid