1 g = 1 ÷ 1000 kg
= 0.001 kg
1 cm³ = 1 ÷ 100 ÷ 100 ÷ 100 m³
= 0.000001 m³
1 g/cm³ = 1 g / 1 cm³
= 0.001 kg / 0.000001 m³
= 1000 kg/m³
The density is 1000 kg/m³.
I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
A)6.15 cm to the left of the lens
Explanation:
We can solve the problem by using the lens equation:

where
q is the distance of the image from the lens
f is the focal length
p is the distance of the object from the lens
In this problem, we have
(the focal length is negative for a diverging lens)
is the distance of the object from the lens
Solvign the equation for q, we find


And the sign (negative) means the image is on the left of the lens, because it is a virtual image, so the correct answer is
A)6.15 cm to the left of the lens
Answer:
The induced current can be increased in the coil in the following ways: By increasing the strength of the magnet. By increasing the speed of the magnet through the coil.
Explanation:
Answer:
5.62 m/s
Explanation:
Newton's law of motion can be used to determine the maximum speed of the elevator. In the question, we are given:
Force exerted by the elevator (R) = 1.7 times the weight of the passenger (m*g)
Thus: R = 1.7*m*g
Distance (s) = 2.3 m
Newton's second law of motion: R - m*g = m*a
1.7*m*g - m*g = m*a
a = 0.7*m*g/m = 0.7*g = 0.7*9.8 = 6.86 m/s²
To determine the maximum speed:



Therefore, the elevator maximum speed is equivalent to 5.62 m/s.