Answer:
A)
B) 
Explanation:
A) Using the Archimedes' force we can find the weight of water displaced:

Where:
: is the weight of the block in the air = 20.1 N
: is the weight of the block in the water = 15.3 N

Now, the mass of the water displaced is:

The volume of the block can be found using the mass of water displaced and the density of the water:

B) The density of the block can be found as follows:

I hope it helps you!
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>
C. coil suspended by bearings.
<span>but im not 100% sure</span>
Yes, for balance.hope this helped.
three charged particals are located at the corners of an equil triangle shown in the figure showing let (q 2.20 Uc) and L 0.650