Answer:
The answer is O C. A flower absorbs most of the light that hits it.
Explanation:
- <u><em> blackbody radiator is defined as an object that absorbs all electromagnetic radiation that falls on it at all frequencies over all angles of incidence.</em></u>
- <u><em> No radiation is reflected from such an object. According to thermodynamic arguments embodied in Kirchhoff's law, a good absorber is also a good emitter.</em></u>
Answer:
22.2 m/s
Explanation:
First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.
Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.
The average speed can be found by using the equation
. After substitution, this gives the fraction
, which reduces to 22
m/s, or about 22.2 m/s.
<span>let the fsh jump with initial velocity (u) in direction (angle p) with horizontal
it can cross and reach top of trajectory if its top height h = 1.5m
and horizontal distance d = (1/2) Range
--------------------------------------...
let t be top height time
at top height, vertical component of its velocity =0
vy = 0 = u sin p - gt
t = u sin p/g
h = [u sin p]*t - 0.5 g[t[^2
1.5 = u^2 sin^2 p/g - u^2 sin^2 p/2g
u^2 sin^2 p/2g = 1.5
u^2 sin^2 p = 1.5*2*9.8 = 29.4
u sin p = 5.42 m/s >>>>>>>>>>>>>>> V-component
=====================
t = HALF the time of flight
d = (1/2) Range (R) = (1/2) [2 u^2 sin p cos p/g]
1 = u^2 sin p cos p/g
u sin p * u cos p = 9.8
5.42 * u cos p = 9.8
u cos p = 1.81 m/s >>>>>>>>>>>>> H-component
check>>
u = sqrt[u^2 cos^2 p + u^2 sin^2 p] = 5.71 m/s
u < less than fish's potential jump speed 6.26 m/s
so it will able to cross</span>
1. Traveling by car means you have specific roads to follow. You won’t be able to go straight to Banning high from POLAHS. The 8.4km will be defined as distance. Traveling by helicopter you don’t have roads to follow that means you can fly directly to banning high. 6.8km will be defined as displacement.
2. A) 400m
B)0m
C)d=1/2(vi+vf)t
400=1/2(0+vf)92
8.7m/s
D) 0m/s
E) Not sure but instantaneous velocity refer to velocity at a given point. Average velocity is just the average. Usually instantaneous velocity won’t be same as the average velocity.
Plz like if it helped.
Answer:
2.8 cm
Explanation:
= Separation between two first order diffraction minima = 1.4 cm
D = Distance of screen = 1.2 m
m = Order
Fringe width is given by

Fringe width is also given by

For second order

Distance between two second order minima is given by


The distance between the two second order minima is 2.8 cm