electric potential energy..electrons get the the kinetic energy from the voltage applied across the conductor
Answer:
(a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.
Explanation:
Given that,
Speed = 20 m/s
Angle = 40°
Height = 22 m
Time = 3.25 sec
(a). We need to calculate the distance
Using formula of distance

Put the value into the formula


(b). We need to calculate the horizontal velocity
Using formula of velocity

Put the value into the formula


We need to calculate the vertical velocity
Using equation of motion

Put the value into the formula


Negative sign shows the opposite direction.
We need to calculate the speed of ball
Using formula of speed



Hence, (a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.
Diagram A is the correct diagram
Answer:
0.1 m
Explanation:
The closest distance the electrodes used in an NCV test in oerder to measure
the voltage change as a response to the stimulus is 0.1 m.
This is because the shortest observable time period is not less than the action-potential time response of 1 mili second the length traveled by the sensation during this time is 1 m sec x 100 m / s =0.1 m, which is the shortest distance the electrodes could be positioned on the nerve.
Solve for acceleration:
<em>a</em> = (21.4 m/s - 33.8 m/s) / (4.7 s)
<em>a</em> ≈ -2.6 m/s²
Solve for force:
<em>F</em> = (1400 kg) <em>a</em> ≈ -3700 N
The minus sign tells you the force points in the opposite direction of the car's motion. Its magnitude is always positive, so <em>F</em> = 3700 N.