Answer:
1. Distance travelled = 12 km.
2. Displacement = 8.6 km
Explanation:
From the question given above, the following data were obtained:
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance =?
Displacement =?
1. Determination of the distance travelled.
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance (dₜ) =?
dₜ = d₁ + d₂
dₜ = 7 + 5
dₜ = 12 km
2. Determination of the displacement.
In the attached photo, R is the displacement.
We can obtain the value of R by using the pythagoras theory as illustrated below:
R² = 7² + 5²
R² = 49 + 25
R² = 74
Take the square root of both side
R = √74
R = 8.6 km
The right answer for the question that is being asked and shown above is that: "B) allowing Carolina planters to expand rice cultivation into Georgia's lowlands."
-I hope this is the answer you are looking for.
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>
<h3><u>Given</u> :</h3>
Three identical resistors of resistances 5Ω, 10Ω and 30Ω are connected with a battery of 12V
<h3><u>To Find</u> :</h3>
We have to find current through the each resistor and equivalent resistance of circuit
<h3><u>SoluTion</u> :</h3>
➝ Equivalent resistance of series connection is given by
➝ We know that, Equal current flow through each resistor in series connection.
➝ As per ohm's law, Current flow through a conductor is directly proportional to the applied potential difference.
◈ <u>Equivalent resistance</u> :
⇒ Req = R1 + R2 + R3
⇒ Req = 5 + 10 + 30
⇒ <u>Req = 45Ω</u>
◈ <u>Current flow in circuit</u> :
⇒ V = IReq
⇒ 12 = I × 45
⇒ <u>I = 0.27A</u>
፨ Therefore, 0.27A current will flow through each resistor.
GPE= height x mass x gravitational field strength
5 x 10 x 9,8=490J