Answer:
Using a formula, the standard error is: 0.052
Using bootstrap, the standard error is: 0.050
Comparison:
The calculated standard error using the formula is greater than the standard error using bootstrap
Step-by-step explanation:
Given
Sample A Sample B


Solving (a): Standard error using formula
First, calculate the proportion of A



The proportion of B



The standard error is:







Solving (a): Standard error using bootstrapping.
Following the below steps.
- Open Statkey
- Under Randomization Hypothesis Tests, select Test for Difference in Proportions
- Click on Edit data, enter the appropriate data
- Click on ok to generate samples
- Click on Generate 1000 samples ---- <em>see attachment for the generated data</em>
From the randomization sample, we have:
Sample A Sample B



So, we have:






F(x)=5x
normal domain: all real numbers
practical domain: <span>all positive integers
</span>becasue we can substituent with any positive integer in the place of x
Answer:
C = π(6)
C = 6π
C = 18.84
Step-by-step explanation:
The circumference is the distance around the circle. It relates the number of times the diameter will encircle the circumference as 3.14 or π. As a result, the formulas for the circumference of a circle are C = 2πr or C = πd. The information given is the diameter so use C = πd by substituting d = 6.
C = π(6)
C = 6π
C = 18.84









<h3><em>
Hope I helped you!</em></h3><h3><em>
Success!</em></h3>
<em>by a random romanian guy</em>
Answer:
6
Step-by-step explanation:
2+6=8
8+6=14
14+6=20
20+6=26