1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
4 years ago
6

A spring scale hung from the ceiling stretches by 6.1 cm when a 2.0 kg mass is hung from it. The 2.0 kg mass is removed and repl

aced with a 2.5 kg mass.
Part A What is the stretch of the spring? A spring scale hung from the ceiling stretches by 6.1 cm when a 2.0 kg mass is hung from it. The 2.0 kg mass is removed and replaced with a 2.5 kg mass.
Part A What is the stretch of the spring?
Physics
1 answer:
Hunter-Best [27]4 years ago
6 0

The ideal spring equation is

                               Stretch  =  K  times  Force  .

This says that the stretch is directly proportional to the force.
In simple English, that means that if you double the force, then
you double the stretch, and if you multiply the force by  π  or
any other number, you multiply the stretch by the same number.

So you can always write a proportion for a spring:

                 Stretch₁ / Force₁  =  Stretch₂ / Force₂ .

Part A:

In Part-A of this question, the force is increased to  (2.5 / 2.0) =  1.25 times .

So the stretch is also increased to  1.25 times .

                 (1.25) x (6.1 cm)  =  7.625 cm  .
You might be interested in
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
kow [346]

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

7 0
4 years ago
Which material will heat up the most quickly if placed near a heat source?
Thepotemich [5.8K]

Answer:

Metal

Explanation:

Just answered on Apex

7 0
3 years ago
Read 2 more answers
30 points - how do I do 2 b and c?
Delvig [45]
1. its must be B and 2. must be C
7 0
3 years ago
How to find the density of air?
nikitadnepr [17]
You have to divide the pressure exerted by the air into two partial pressures: of the dry air and of the water vapor. Combining these two values gives you the parameter.
8 0
3 years ago
Other questions:
  • Chemical weathering is the breakdown of rocks by changing their color and size.
    6·2 answers
  • An object is accelerating if it is moving____. circle all that apply. ​
    10·1 answer
  • According to the U.S. Census Bureau, in 2016, about 12.7% of the American population lived in poverty. Research demonstrates tha
    15·1 answer
  • I’ll give brainliest
    6·1 answer
  • The reactivity of an atom arises primarily from ___.
    9·1 answer
  • Which of the following is not used when prediciting volcanic erruptions
    7·1 answer
  • As Merrill watches his finger with both eyes open as he brings his finger closer to his nose, he feels his eye muscles working.
    8·1 answer
  • What is a constructive force caused by the convection in the mantle
    13·1 answer
  • What is the equivalent resistance for a parallel circuit that has two resistors: 18.0 ohms and 23.5 ohms?
    7·1 answer
  • What is common between transverse waves and longitudinal waves?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!