Answer: That the storm is moving toward hillville and that residents should be prepared.
Explanation:
Answer:
The vector magnitudes F and r are always postive, so the sign o W is determined entirely by the angle e between the force and the displacement.Submit Figure 1 off 1 part C
Answer:
Explanation:
ignore air resistance
Let t be the time of fall for the dropped stone.
½(9.8)t² = 43.12(t - 2.2) + ½(9.8)(t - 2.2)²
4.9t² = 43.12t - 94.864 + 4.9(t² - 4.4t + 4.84)
4.9t² = 43.12t - 94.864 + 4.9t² - 21.56t + 23.716
0 = 21.56t - 71.148
t = 71.148/21.56 = 3.3 s
h = ½(9.8)3.3² = 53.361 = 53 m
or
h = 43.12(3.3 - 2.2) + ½(9.8)(3.3 - 2.2)² = 53.361 = 53 m
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions