Answer:
C. 157 bar/2270 psi
Explanation:
Calculation to determine what we should head back when either of our SPGs read
SPGs=200 bar -[200 bar-(50 bar + 20 bar)]÷1/3]
SPGs=200 bar-[(200 bar-70 bar)÷1/3]
SPGs=200 bar-(130 bar÷1/3)
SPGs=200 bar-43 bar
SPGs=157 bar/2270 psi
Therefore based on the above calculation we should head back when either of our SPGs read 157 bar/2270 psi
Kepler's third law hypothesizes that for all the small bodies in orbit around the
same central body, the ratio of (orbital period squared) / (orbital radius cubed)
is the same number.
<u>Moon #1:</u> (1.262 days)² / (2.346 x 10^4 km)³
<u>Moon #2:</u> (orbital period)² / (9.378 x 10^3 km)³
If Kepler knew what he was talking about ... and Newton showed that he did ...
then these two fractions are equal, and may be written as a proportion.
Cross multiply the proportion:
(orbital period)² x (2.346 x 10^4)³ = (1.262 days)² x (9.378 x 10^3)³
Divide each side by (2.346 x 10^4)³:
(Orbital period)² = (1.262 days)² x (9.378 x 10^3 km)³ / (2.346 x 10^4 km)³
= 0.1017 day²
Orbital period = <u>0.319 Earth day</u> = about 7.6 hours.
Answer:
C. The motor tasks performed in the experiment were too simple.
On this case is the best option since the student wants to explain the effect of motor imagery and action observation together into the excitability. And maybe is too simple, since we need to cover other possibilities in order to analyze the excitability.
Explanation:
A. The procedure used did not include MEP recordings prior to each task.
Not true, is not a requisite record MEP prior to the task to evaluate the variable of interest on this case.
B. MEP amplitudes in an individual are typically highly consistent.
The Motor evoked potentials (MEP) "are electrical signals recorded from neural tissue or muscle after activation of central motor pathways". But on this case that's a technical aspect related to the topic and this not would be the reason why we need to withhold the presentation
C. The motor tasks performed in the experiment were too simple.
On this case is the best option since the student wants to explain the effect of motor imagery and action observation together into the excitability. And maybe is too simple, since we need to cover other possibilities in order to analyze the excitability.
D. The six different conditions were run in random order.
That's not true the student are not analyzing 6 different conditions, just 2.
B is the answer! Because no one would be pushing the rock all the way down the hill it would just go down by itself by rolling!!
Hope i helped plz mark as brainlist and 5 star'!
There is no soil in a hole
;)