Answer:
C. the C horizon likely has a rockier texture than the topsoil and subsoil.
Explanation:
because i did it on study island
Answer:
D. The moon is closer to Earth than the sun.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the moon across to the Earth sphere.
Since gravity variate with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance
For example, see the image below, point A is closer to the moon than point b and at the same time the center of mass of the Earth will feel more attracted to the moon than point B. Therefore, that creates a tidal bulge in point A and point B.
The Sun tidal force contributes to the tidal force of the moon over the earth making high tides higher and low tides lower.
However, even when the sun is more massive than the moon, it is farther away from the Earth than the moon. So, it is clear by equation 1 that the moon's gravity has a greater effect on Earth's oceans than the sun's gravity.
Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Answer:
m₁ = 0.37 kg
Explanation:
According to Law of conservation of energy:
Heat Lost by Aluminum = Heat Gained by Water
m₁C₁ΔT₁ = m₂C₂ΔT₂
where,
m₁ = mass of piece of aluminum = ?
C₁ = specific heat capacity of aluminum = 900 J/kg.°C
ΔT₁ = Change in temperature of aluminum = 250°C - 22°C = 228°C
m₂ = mass of water = 9 kg
C₂ = specific heat capacity of water = 4200 J/kg.°C
ΔT₁ = Change in temperature of aluminum = 22°C - 20°C = 2°C
Therefore,
m₁(900 J/kg.°C)(228 °C) = (9 kg)(4200 J/kg.°C)(2°C)
m₁ = (75600 J)/(205200 J/kg)
<u>m₁ = 0.37 kg</u>