Answer:
1.5 for each song.
Step-by-step explanation:
subtract $6.99 by $21.99 = 15 divided by 10 = 1.5
You solve for the domain by setting the radicand less than or equal to 0 and solving for x. Dividing by a -x, we switch the sign so we have that the domain is less than or equal to 0, or all negative numbers. We know that it breaks every law in math to have a negative radicand with an even index, so if the domain is all negative values of x, taking a negative of a negative gives us a positive. The negative sign OUTSIDE the radical means you are flipping the graph upside down. So instead of having a range of y is greater than or equal to 0 as does the parent graph, you have flipped it upside down so it heads more negative in regards to the range. Therefore, the domain and the range both have the same sign, thee last choice from above.
Answer:
-19-28i
Step-by-step explanation:
Simplify and write the answer in standard form, a+bi.
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71