Answer: It takes 3.120 seconds for the concentration of A to decrease from 0.860 M to 0.260 M.
Explanation:
Integrated rate law for second order kinetics is given by:
k = rate constant = 
= initial concentration = 0.860 M
a= concentration left after time t = 0.260 M

Thus it takes 3.120 seconds for the concentration of A to decrease from 0.860 M to 0.260 M.
Answer:
The reaction will move to the left.
Explanation:
<em>Ba(OH)₂ = Ba²⁺ + 2OH⁻,</em>
<em>Ba(OH)₂ is dissociated to Ba²⁺ and 2OH⁻.</em>
- If H⁺ ions are added to the equilibrium:
H⁺ will combine with OH⁻ to form water.
<em>So, the concentration of OH⁻ will decrease and the equilibrium is disturbed.</em>
<em />
<em>According to Le Châtelier's principle: </em>when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- So, the reaction will move to the right to suppress the effect of decreasing OH⁻ concentration.
- The base will dissociate to form more OH⁻ and thus, the quantity of Ba(OH)₂ will decrease.
<em>So, the right choice is: the reaction will move to the left, is the choice that will not happen to the equilibrium.</em>
Answer:
c. Only certain energies are allowed for the electron in a hydrogen atom
Explanation:
Emission spectrum are produced when the excited electron in a atom release the energy in the form of photons to come to ground state. These photons are of different wavelengths depending on the excitation state of emitting electron or transition of electron. These electromagnetic radiation are observed through prism to produce the spectrum.
As the name indicates this spectrum is produced by emission of energy. Although the electron can be excited by different methods such as by heating but the key point is that electrons in hydrogen atom will emit the photons of same energy which they absorb and each electron can absorb only certain type of energy. So four lines were observed in the visible spectrum of hydrogen because only certain energies are observed for hydrogen atom.
Answer:
The speed of the 60.0 kg skater should be 0.281 m/s
Explanation:
<u>Step 1: </u>Data given
Mass of skater 1 = 45.0 kg
speed of skater 1 = 0.375 m/s
Mass of skater 2 = 60.0 kg
<u>Step 2:</u> Calculate the speed of skater 2
To solve this problem, we will use 'Conservation of momenton'. This means the momentum before the push equals the momentum after.
momentum p = m*v
Momentum p(before) = momentum p(after)
m1*v1 = m2 * v2
⇒ with m1 = mass of skater 1 = 45.0 kg
⇒ with v1 = the velocity of skater 1 = 0.375 m/s
⇒ with m2 = the mass of skater 2 = 60.0 kg
⇒ with v2 = the velocity of skater 2 = TO BE DETERMINED
45.0 * 0.375 = 60.0 * v2
v2 = (45.0*0.375)/60
v2 = 0.281 m/s
The speed of the 60.0 kg skater should be 0.281 m/s
Don’t really know what it is just need points end