Dmitri Mendeleev is the answer
Potassium carbonate, K 2CO 3, sodium iodide, NaI, potassium bromide, KBr, methanol, CH 3OH, and ammonium chloride, NH 4Cl, are s
slava [35]
Answer:
Potassium carbonate (K₂CO₃)
Explanation:
The compounds dissociate into ions in water, as follows:
K₂CO₃ → 2 K⁺ + CO₃⁻ ⇒ 3 dissolved particles per mole
NaI → Na⁺ + I⁻ ⇒ 2 dissolved particles per mole
KBr → K⁺ + Br⁻ ⇒ 2 dissolved particles per mole
CH₃OH → CH₃O⁻ + H⁺ ⇒ 2 dissolved particles per mole
NH₄Cl → NH₄⁺ + Cl⁻ ⇒ 2 dissolved particles per mole
Therefore, the largest number of dissolved particles per mole of dissolved solute is produced by potassium carbonate (K₂CO₃).
This question may only be ansewered by frequent mattrrs
Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %
<u>Given information:</u>
Concentration of NaF = 0.10 M
Ka of HF = 6.8*10⁻⁴
<u>To determine:</u>
pH of 0.1 M NaF
<u>Explanation:</u>
NaF (aq) ↔ Na+ (aq) + F-(aq)
[Na+] = [F-] = 0.10 M
F- will then react with water in the solution as follows:
F- + H2O ↔ HF + OH-
Kb = [OH-][HF]/[F-]
Kw/Ka = [OH-][HF]/[F-]
At equilibrium: [OH-]=[HF] = x and [F-] = 0.1 - x
10⁻¹⁴/6.8*10⁻⁴ = x²/0.1-x
x = [OH-] = 1.21*10⁻⁶ M
pOH = -log[OH-] = -log[1.21*10⁻⁶] = 5.92
pH = 14 - pOH = 14-5.92 = 8.08
Ans: (b)
pH of 0.10 M NaF is 8.08