water is watching over you
Answer: -22.2 kJ
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
SGDSDGSDGSDGgsg
According to Hess’s law, the chemical equation can be treated as algebraic expressions and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
(1)

(2)

(3)

Reversing 1 ,2 and 3 and halving 1 and 2 and then adding we get net equation:
(4)


Therefore, the heat of reaction, ΔH, for the reaction is -22.2 kJ
Answer:
See explanation
Explanation:
the compound that gives the fastest SN2 reaction with sodium methoxide- 1-bromohexane
the compound that gives the fastest SN1 reaction- 3-bromo-3-methylpentane
the compound(s) that undergo an SN1 reaction to give rearranged products- 1-bromo-2,2-dimethylbutane
the compound that is least reactive to sodium methoxide in methanol -
3-bromo-3-methylpentane
the compound(s) that can exist as diastereomers - 3-bromo-3-methylpentane
the compound(s) that can exist as enantiomers- 3-bromo-2-methylpentane
Answer:
4
Explanation:
bromothymol blue turns yellow betwwen then pH levels of 2 and 6
Answer:
(a) 0.8 s
(b) t = 7.2 s
Explanation:
(a) Half life expression for second order kinetic is:
![t_{1/2}=\frac{1}{k[A_o]}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BA_o%5D%7D)
Where,
is the initial concentration = 1.0 M
k is the rate constant = 1.25 M⁻¹s⁻¹
So,

Half life = 0.8 s
(b) Integrated rate law for second order kinetic is:
![\frac{1}{[A_t]} = \frac{1}{[A]_0}+kt](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA_t%5D%7D%20%3D%20%5Cfrac%7B1%7D%7B%5BA%5D_0%7D%2Bkt)
Where,
is the final initial concentration
For 90% completion, 10% is left. so,
![[A_t]=\frac {10}{100}\times 1.0=0.1\ M](https://tex.z-dn.net/?f=%5BA_t%5D%3D%5Cfrac%20%7B10%7D%7B100%7D%5Ctimes%201.0%3D0.1%5C%20M)
So,

t = 7.2 s