Answer: This can be quickly solved with "traintracks"
Explanation:
You start w/ grams of water and want to find moles of oxygen gas produced.
So you want to Convert:
Grams of water -> moles of water -> moles of oxygen gas.
The two things you need to know to set up the tracks are:
1)Molar mass of water- H2O
Hydrogen - 1.008(x2)
Oxygen - 16.00
Water - 18.016
Answer:
Question 1
C) polarizability
Question 2
C) London dispersion forces
Question 3:
D)Kr
Question 4:
E) strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other
Answer:
- <em>The partial pressure of oxygen in the mixture is</em><u> 320.0 mm Hg</u>
Explanation:
<u>1) Take a base of 100 liters of mixture</u>:
- N: 60% × 100 liter = 60 liter
- O: 40 % × 100 liter = 40 liter.
<u>2) Volume fraction:</u>
At constant pressure and temperature, the volume of a gas is proportional to the number of molecules.
Then, the mole ratio is equal to the volume ratio. Callin n₁ and n₂, the number of moles of nitrogen and oxygen, respectively, and V₁, V₂ the volume of the respective gases you can set the proportion:
That means that the mole ratio is equal to the volume ratio, and the mole fraction is equal to the volume fraction.
Then, since the law of partial pressures of gases states that the partial pressure of each gas is equal to the mole fraction of the gas multiplied by the total pressure, you can draw the conclusion that the partial pressure of each gas is equal to the volume fraction of the gas in the mixture multiplied by the total pressure.
Then calculate the volume fractions:
- Volume fraction of a gas = volume of the gas / volume of the mixture
- N: 60 liter / 100 liter = 0.6 liter
- V: 40 liter / 100 liter = 0.4 liter
<u>3) Partial pressures:</u>
These are the final calculations and results:
- Partial pressure = volume fraction × total pressure
- Partial pressure of N = 0.6 × 800.0 mm Hg = 480.0 mm Hg
- Partial pressure of O = 0.4 × 800.0 mm Hg = 320.0 mm Hg
Answer:
Burning wood
Explanation:
the fire releases heat into the air from the burning wood